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Abstract

A practical problem in processing any audio stream is to detect

different types of audio and to treat each segment accordingly.

This problem may be viewed as a combination of audio seg-

mentation and audio source classification. This paper, treats the

latter problem, using a Gaussian Mixture Model (GMM). The

problem is formulated as one of identification of several music

models and two gender models for speech. First an audio seg-

ment is classified as music or speech. Then, the type of musical

instrument or the gender of the speaker is tagged. 1400 excerpts

of music in different styles from over 70 composers were used

together with the speech of 700 male and 700 female speakers.

The audio signal was telephone quality sampled at 8kHz with

µ-law amplitude encoding. A 1% error rate of speech versus

music classification and a 1.9% gender classification error rate

were achieved at speeds of more than three times real-time on a

single core of a multi-core Xeon processor.

1. Introduction

In many practical audio processing systems, it is important to

determine the type of audio. For instance, consider a telephone-

based system which includes a speech recognizer. Such recog-

nition engines would produce spurious results if they were pre-

sented with non-speech, say music. These results may be detri-

mental to the operation of an automated process. This is also

true for speaker identification and verification systems which

expect to receive human speech. They may be confused if

they are presented with music or other types of audio such as

noise. For text-independent speaker identification systems, this

may result in mis-identifying the audio as a viable choice in the

database and resulting in dire consequences!

Similarly, some systems are only interested in processing

music. An example is a music search system which would

look for a specific music or one resembling the presented seg-

ment. These systems may be confused, if presented with human

speech, uttered inadvertently, while only music is expected.

The goal of this research is the development of a classifica-

tion filter which would tag a segment of audio as speech, music,

noise, or silence. This problem contains two separate parts. The

first part is the segmentation of the audio stream into segments
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of similar content. This work has been under development for

the past few decades with some good results [1, 2, 3].

The second part is the classification of each segment into

speech, music, or the rejection of the segment as silence or

noise. Furthermore, when the audio type is human speech, it

is desirable to do a further classification to determine the gen-

der of the individual speaker. Gender classification is helpful

in choosing appropriate models for conducting better speech

recognition, more accurate speaker verification, and reducing

the computation load in large-scale speaker identification.

On the other hand, if the signal of interest is music, it is in-

teresting to be able to determine the specific type of music, for

instance in the form of identifying the instrument. Of course,

this problem is not quite so simple due to overlap of instruments

in orchestral pieces and the sheer number of possible instru-

ments. However, a close approximation to the target instrument

and categorization as orchestral or specific types of bands is

also useful. We are also interested in an approach which would

not require tremendous modeling efforts for every new circum-

stance which may arise.

To address the instrument identification problem and to be

able to cover most types of music, a set of 14 representative

instruments or collections of instruments were modeled. We

shall see that these models cover an ample space for performing

a superb job of classification of music, versus human speech.

Different approaches with varying perspectives to audio

source classification have been reported. One group has tried

to identify individual musical instruments [4, 5, 6, 7, 8, 9, 10];

whereas another group has concentrated on classifying speak-

ers based on gender [11, 12, 13, 14, 15, 16]. [17] reports de-

velopments in classifying the genre of audio, as stemming from

different video sources, containing movies, cartoons, news, etc.

In this research project, a text and language independent

speaker recognition engine is used to achieve these goals by

performing audio classification. The classification problem is

posed as an identification problem among a series of speech,

music, and noise models. Although a very low quality audio,

based on highly compressed telephony data, is used, the system

achieved a 1% error rate in discriminating between speech and

music and a 1.9% error in determining the gender of individual

speakers once the audio is tagged as speech.

In Section 2, the prior art in instrument identification and

gender classification are discussed. Section 3 describes the au-

dio quality as well as the data collection apparatus. In Sec-

tion 4, modeling and in Subsection 4.3 the specific GMM-based

speaker recognition (used here), have been discussed. Section 5



presents the results of these experiments followed by the con-

clusion in Section 6.

2. Prior Art

In this section, a quick review is given on the two different parts

of this research, namely the speech and gender related aspect

plus musical instrument identification. Here, different types of

audio are modeled using representative samples, designed to

cover the space of possible outcomes. It is not our intent to ac-

curately model any one part of this space. Instead, it is desired

to have enough coverage such that a rough separation among

different types of audio may be achieved.

2.1. Gender Identification

In 1952, Peterson [18] conducted a series of experiments on the

10 common vowels in English. 33 men, 28 women, and 15

children (a total of 76 speakers) were asked to say 10 words

(two times each) and their utterances were recorded. The words

were designed to examine the 10 vowels in context of an “h” to

the left and a “d” to the right: hid, hId, hEd, hæd, hAd, h@d, hÚd,

hud, h2d, and hÇd.

Figure 1 shows the mean value of the fundamental fre-

quency for the vowel in each of the above words, displayed

for men, women, and children separately. Note that the fun-

damental frequency (formant 0) does not change much among

different vowels. This is the fundamental frequency of the vo-

cal tract based on a normal opening of the vocal folds when one

is producing a vowel, but it varies significantly across gender

and age. Formants 1 and 2 do vary considerably depending on

which vowel is being uttered, however Formant 3 does not [19].

For the past two decades, several different techniques [11,

12, 13, 14, 15, 16], based on the above premise, have been re-

ported for identifying gender. Some effort has also been fo-

cused on determining the age groups of individuals based on

the above and the concept of jitter [19]. [20] proposes using the

mean MFCC as an indicator of jitter and states that it is a good

indicator of the gender and age of the individual. Here, we are

using Cepstral mean subtraction (CMS), and will show great

results for gender classification, indicating that gender does not

seem to be so correlated to the Cepstral mean. Of course, since

age has not been considered in our study, it is possible that the

Cepstral mean may still be related to jitter and age.

Figure 1: Fundamental Frequencies for Men, Women, and Children
while uttering 10 common English vowels – Data From [18]

2.2. Musical Instrument Identification

Martin [4, 21] has used pattern recognition techniques for the

problem of musical instrument identification. He uses the log-

lag correlogram which is adopted from cochlear models. This

technique is related to the pitch which is usually ignored in stan-

dard speaker recognition techniques that do not use prosodic

features. Since we are not using pitch here, it is fundamentally

different from our approach. For a robust and universal resolu-

tion, the objective is to determine timbre and not be dependent

on values related to pitch and sonority (see [19] for motivation).

[7] also uses cepstral coefficients for conducting musical

instrument recognition. However, it uses very complex fea-

tures which are connected to the dynamics of musical pieces

and maps the frequencies to the Bark frequecy scale [22] which

is similar to the Mel-Frequency mapping in that it is also based

on the psychophysical power law of hearing [19]. However, the

complex set of features as well as heuristics make this approach

too impractical for the purpose of a simple and universal pre-

filter. The approach of [7] is more suitable for accurate recog-

nition of instruments and is inherently much more costly.

As previously discussed, every effort has been made to

make a simple and flexible model which may be easily mod-

ified in order to be able to handle a finer granularity of audio

types. Modeling very specific aspects, although attractive, may

result in too much complexity and reduction of practicality.

In the following section, the experimental apparatus is de-

scribed, aimed at showing the effectiveness of a GMM-based

speaker recognition system in determining timbre as well as

gender. Great effort has been expended to ensure that practi-

cality is not sacrificed. For instance, it would have been simple

to take on clean audio at high sampling rates to do this demon-

stration. However, the real word is seldom so giving. Therefore,

audio data with low sampling rates has been chosen.

3. Apparatus

The speech part of the apparatus was described in some de-

tail in [23], therefore, only a brief summary is given here.

The speech data was collected using µ-Law amplitude encod-

ing [24] at a sampling rate of 8kHz. The audio was then imme-

diately converted to 8kHz high-efficiency advanced audio cod-

ing format (HE-AAC) [25] which is a very aggressive, lossy,

and low-bit-rate audio compression technique. HE-AAC was

used to stream the audio to a server through flash. In turn, the

audio was converted back to µ-Law and subsequently converted

to 16-bit 8kHz linear Pulse Code Modulation (LPCM), inside

the classification engine. The original signal was recorded using

100 stations with different hardware, at random. 700 male and

700 female speakers were selected, completely at random, from

over 70,000 speakers in our database. The speakers were non-

native speakers of English, at a variety of proficiency levels,

speaking freely. This introduced significantly higher number of

pauses in each recording, as well as more than average num-

ber of humming sounds while the candidates would think about

their speech. The segments were live responses of these non-

native speakers to test questions in English, aimed at evaluating

their linguistic proficiency.

An equal amount of music was chosen to create a balance

in the quantity of data, reducing any bias toward speech or mu-

sic. The music was downsampled from its original quality to

8kHz, using 8-bit µ-Law amplitude encoding, in order to match

the quality of speech. The 1400 segments of music were chosen

at random from European style classical music, as well as jazz,

Persian classical, Chinese classical, folk, and instructional per-

formances. Most of the music samples were orchestral pieces

with some solos and duets present.



4. Audio Classification Modeling

The following two subsections briefly describe the models.

Each identification model only occupies about 72 kB of storage

and includes the statistics for representing Gaussian mixtures.

In this case, instead of modeling the voice of an individual, spe-

cific speech and music models were built to perform the classi-

fication task.

4.1. Speech and Gender Modeling

According to the discussions of Section 2.1, a simple gender

recognition system would be possible by estimating the funda-

mental frequency or determining the location of the formants

for different vowels. However, here we would like to steer

away from hard-coded algorithms which may work for a por-

tion of the population, but fail miserably for some outliers. An

effort has been made to pool together a diverse set of male and

female speakers (see Table 1) in order to create a male and a

female model. This method has the flexibility of being able to

adapt [23] to new outliers introduced in the future.

Model Category Model Enrollment No. of

No. Description Length (s) Samples

1 Noise Noise 120 –

2 Speech Female 3315 57

3 Speech Male 7536 122

4 Music Accordion 138 –

5 Music Bassoon 126 –

6 Music Clarinet 135 –

7 Music Clavier 109 –

8 Music Gamelon 155 –

9 Music Guzheng 121 –

10 Music Guitar 174 –

11 Music Oboe 110 –

12 Music Orchestra 213 –

13 Music Piano 141 –

14 Music Pipa 203 –

15 Music Tar 146 –

16 Music Throat 76 –

17 Music Violin 222 –

Table 1: Audio Models used for Classification

4.2. Music Modeling

Much in the same spirit as described in Section 4.1, an effort has

been made to choose a variety of different instruments or sets

of instruments to be able to cover most types of music. Table 1

shows these choices. A total of 14 different music models were

trained to represent all music. A conscious effort was made to

pick these instruments in such as way that they would cover

different types of timbres [21].

4.3. A Gaussian Mixture Model Recognizer

The RecoMadeEasy1 speaker recognition engine was used.

This engine is a GMM-based text-independent and language-

independent engine. It uses models for the speaker and the

competing models to conduct an open-set identification task.

The population in the identification task was 17, as shown in

Table 1. The models are parameters for collections of multi-

variate normal density functions which describe the distribution

of the Mel-Cepstral features [19] for speakers’ enrollment data.

1RecoMadeEasy R© is a trademark of Recognition Technologies

This distribution is represented by Equation 1.

p(x) =
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where x, µµµ ∈ Rd and ΣΣΣ : Rd 7→ Rd .

In Equation 1, µµµ is the mean vector where,

µµµ
∆
= E {x}

∆
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ˆ ∞
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x p(x)dx (2)

The sample mean approximation for Equation 2 is,

µµµ ≈
1

N

N−1

∑
i=0

xi (3)

where N is the number of samples and xi are the MFCC [19].

The Covariance matrix is defined as,

ΣΣΣ
∆
= E

{

(x−E {x}) (x−E {x})T
}

= E

{

xxT
}

−µµµµµµ
T (4)

The diagonal elements of ΣΣΣ are the variances of the individual

dimensions of x. The off-diagonal elements are the covariances

across the different dimensions.

The unbiased estimate of ΣΣΣ, Σ̃ΣΣ is given by the following,

Σ̃ΣΣ =
1

N −1

[

Sxx −N(µµµµµµ
T )

]

(5)

where the sample mean µµµ is given by Equation 3 and the second

order sum matrix, Sxx is given by,

Sxx
∆
=

N−1

∑
i=0

xixi
T (6)

The features used by the recognizer are Mel-Frequency Cep-

stral Coefficients (MFCC). Unfortunately, due to the shortage

of space, not much detail may be presented in this section. Ref-

erence [19] describes details of such a GMM-based recognizer.

5. Results

Figure 2 shows the classification error between speech and mu-

sic. It has been computed for different segments of audio from

2.5s to 60s long. As the graph shows, the ideal amount of audio

needed for classification is close to 10s. This produces nearly

the same results as with 60s of data, but it is much more practi-

cal. Indeed, even reducing to 2.5s does not degrade the results

by much. Given the poor audio quality, this is quite promis-

ing, especially as far as the speech is concerned. In fact, most

of the errors come from segments which were actually speech

and were classified as music. A major contributor to this is that

many of the speech recordings have a loud babbling sound in

the background, since they have been recorded in a public test

area with close to a hundred people taking tests in cubicles.

Figure 3 shows the conditional error rate of gender classi-

fication. This is the percentage of the speech segments which

were correctly identified as speech, but were tagged with the

wrong gender. In this case, we can see that the the accuracy

of the gender classification is a bit more tied to the amount of

data. However, still a 10s segment seems to be quite practical

for producing decent results.

As the length of audio was reduced, certain segments were

rejected for not containing enough audio. As expected, the

number of rejections was at its maximum of 16, when the length
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Figure 2: Speech vs. Music Classification Error (2800 samples – 700
male speakers, 700 female speakers, and 1400 music segments) suggests
an optimal segment length of about 10 seconds for maximum performance
with the least amount of audio
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Figure 3: Gender Classification Error (relative to samples which are
tagged as speech). Figure suggests an optimal segment length of about
10 seconds to achieve a practical sample length with an acceptable error.

of audio was reduced to 2.5s. Some examples of music which

were rejected at 2.5 were the Lullaby by Aram Khachaturian,

Bolero by Maurice Ravel, Eine Kleine Nachtmusik by Mozart,

and Jesu, Joy of Man’s Desiring by Bach. These are some of

the better known examples of the 16 rejected pieces. They are

all very soft and slow. Therefore, chances of getting silences or

very low energy segments in a 2.5 second segment were quite

high. Still this is only a 0.57% of the total. Due to their na-

ture, these should not be considered as errors, since in fact the

2.5 segments did not match speech or music; they were indeed

silence and were correctly classified.

The identification process was faster than three times real-

time, on a single core of a 2.8GHz Intel Xeon processor. In

addition, due to the simple formulation, the process was eas-

ily parallelized. Using two quad-core processors, more than

24 times real-time performance was achieved in obtaining these

results, making it ideal for pre-filtering audio signals prior to in-

troducing them to systems such as speech recognizers or music

understanding modules.
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Figure 4: Percent of Audio Files Rejected for Not Having Enough Audio

6. Conclusion

A practical filter has been designed using speaker identification

to detect speech and music, and to further classify speech into

one uttered by different genders and music coming from differ-

ent sources. In fact, looking at the details of the results from the

musical categories, it is often the case that a solo instrument is

recognized properly with the second and third choice being sim-

ilar instruments. For example, a Guitar and a Tar often follow as

alternate choices for each other. The closest musical instrument

to the male voice seems to be the Bassoon, and sometime Oboe

and clarinet followed the female voice.

In most cases where speech was detected as music, the sec-

ond or third choice seemed to be speech. Also, in many of these

cases, the speaker was thinking out loud, by humming. This

happened quite often in these samples, since all the speakers

were non-native speakers and were responding to live questions,

requiring a long thought process.

Although the classification system produced the type of in-

strument based on Table 1, quantifying the accuracy in these

cases is very complex, due to the many instances of orchestral

pieces in the test. Such quantification and evaluation is being

considered and will be presented in future publications. De-

pending on the results, improvements will be proposed in opti-

mizing the list of instrument models used for classification.
In this study, the quality of the audio was chosen to be quite

challenging in order to keep the system within practical means.
It is expected that by increasing the number of instrument mod-
els and the sampling frequency, much more detailed instrument
recognition would be achievable. Future work is on the way for
classifying the signature (timbre) of specific instruments within
a class of instruments. This is especially interesting, in order to
be able to determine the authenticity of vintage and high quality
instruments from fakes. Presently, work on enrolling Tars from
different instrument manufacturers is being pursued, in order to
determine the accuracy of recognizing an unseen instrument. A
master instrument maker can often hear a few notes and deter-
mine the manufacturer of vintage instruments.
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